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Abstract. CCSDT-n methods (n =1, ..., 4) are analyzed
in terms of many-body perturbation theory and com-
pared with CCSD, CCSD(T), and CCSDT. Correlation
terms, which are introduced at each CCSDT-n level are
identified and discussed with regard to their importance
for the total energy. CCSDT-1a represents the strongest
improvement of CCSD since it covers 75% of the T
terms added at the CCSDT level. At CCSDT-2 and
CCSDT-3, only partial energy terms are added where
the positive .. TQ.. coupling terms at CCSDT-2 are more
important than the slightly negative .. TTS terms
at CCSDT-3. CCSDT-4 leads to new ..TT.. coupling
effects, which lower the energy. Calculated CCSDT-n/
correlation-consistent polarized-valence triple-zeta spec-
tra reveal that the energy changes caused by CCSDT-2,
CCSDT-3, CCSDT-4, and CCSDT largely cancel each
other out; however, because of a dependence of these
contributions on electron clustering the importance
of these effects for the correct description of certain
chemical reactions must be considered. It is shown that
CCSDT-1 (as well as all other CCSDT-n) calculations
lead to atomization energies as accurate as G2 values,
where this result reflects the importance of including at
least some of the T effects.

Key words: Coupled-cluster methods — CCSDT —
CCSDT-n — Many-body perturbation theory analysis —
Atomization energies

1 Introduction

Coupled cluster (CC) theory [1-6] with single (S), double
(D), and triple (T) excitations (CCSDT) [4] belongs to the
most accurate single-determinant methods presently used
in quantum chemistry. CCSDT is size-extensive, contains
because of the exponential ansatz (the wave operator
takes the form exp (Tl + 15 + T3) with 7, denoting the S,

D, and T cluster operators) infinite-order effects and, as
an iterative T method, it can even lead to reasonable
results in the case of electronic systems with multirefe-
rence character. The fact that CCSDT as a projection
CC method is nonvariational and, therefore, can lead to
energies that are lower than the corresponding full
configuration interaction (FCI) energies obtained with
the same basis set is of no serious disadvantage. For most
chemical problems, relative rather than absolute energies
have to be considered and, then, the property of size-
extensivity is more important than the variational
character of the method. However, it is problematic that
CCSDT is an O(M®) method (M: number of basis
functions) or, in terms of n,.. occupied and n;, virtual
orbitals, an n? nJ,  method that with the computational
resources available today can only be applied to
relatively small molecules [7, §].

Therefore, approximate CCSDT methods were
invented using different strategies [9-18]. The first at-
tempts in this direction were made by Paldus, Cizek, and
Shavitt on the basis of their coupled-pair many-electron
theory (CPMET; equivalent to CCD) by extending the
CPMET cluster operator by the S and T cluster opera-
tors in a linear fashion, exp(7») + 7y + 73, thus yielding
E-CPMET [9]. In this way, higher-order disconnected
terms are neglected; however, in the projections onto the
S, D, and T subspaces the form of the CC wave function
is maintained. A similar approach was suggested by
Kvasnicka [10]; however, because of its high computa-
tional cost E-CPMET was only applied to very small
molecules in the 1970s. Later, Urban et al. [11] suggested
using the T contribution at fourth order as a correction
to the CCSD energy [denoted as CCSD + T(4)] or
alternatively to calculate the fourth-order T correction
with the help of the converged 7,(CSSD) amplitudes,
thus yielding CCSD + T(CCSD) [11]. Since CCSD +
T(CCSD) has a tendency to exaggerate T correlations
effects, Raghavachari et al. [12] introduced CCSD(T),
after a similar extension of the approximate CC method
quadratic CI with S and D excitations (QCISD) to



QCISD(T) [13], which adds beside the fourth-order T
term also fifth-order terms ST and DT + TD to avoid
an overestimation of T correlation effects.

Parallel to the development of noniterative methods
for the introduction of T excitations at the CCSD level,
Bartlett and coworkers [11, 14-18] suggested a class of
iterative T methods, which (in contrast to the E-CPMET
method [9]) simplified the complete CCSDT approach
by using different cluster expansions in the projections
onto the S, D, and T subspaces with the aim of reducing
computational cost as much as possible. These are the
CCSDT-n (n = la, 1b, 2, 3, 4) approximations, which
according to Urban and et al. [3] can be characterized as
shown in Scheme 1.

CCSDT-1 includes into the CCSD projection equa-
tions [19] the primary effects of connected T excitations
iteratively, CCSDT-2 adds to CCSDT-1 some fifth- (and
higher-) order effects, CCSDT-3 leads to additional sixth-
(and higher-) order effects, CCSDT-4 includes for the
first time TT coupling effects, while CCSDT-5 = CCSDT
complements all effects of connected T excitations.
Hence, the CCSDT-n methods represent a smooth tran-
sition from CCSD to CCSDT. Since CCSDT-1,2,3 are
oM’ methods while CCSDT-4 similar to CCSDT is
an O(M®) method, one might ask whether any of the
CCSDT-n methods offer an optimal treatment of T
effects in terms of cost-efficiency considerations.

In some selected cases insight was gained into the
performance of all CCSDT-n methods, while extended
testing was only performed at the CCSDT-1 level of
theory [8, 11, 14-18, 20-24]. However, even with regard
to CCSDT-1, results close to FCI as well as examples
of complete failure were reported. At present, there is
no general understanding as to which of the CCDT-n
methods is the best in terms of computational require-
ments and accuracy obtained for a given problem. Many
additional investigations are needed to find out about
the usefulness of CCSDT-n methods. Since such a trial
and error approach to test the applicability of a given
method, although widely used, is not satisfactory, He
and Cremer developed a more systematic procedure for
the comparison of CC methods [25, 26]. In two previous
articles (henceforth, called articles 1 [25] and 2 [26]), CC
methods were expanded in terms of many-body pertur-
bation theory (MBPT) contributions for increasing
orders, n. For this purpose, formulas for sixth-order
MBP, MBPT(6), [27-29] were worked out and it was
determined algebraically which terms of MBPT(n)
(n=2,...,6)are covered by a given method. In addition,
the analysis was extended to higher orders of MBPT
(m < 9) using a graphical approach that helps to
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analyze infinite-order effects [25, 26]. In this way, CCSD,
QCISD, CCSD(T), QCISD(T), CCSD(TQ), QCISD(TQ),
and CCSDT were analyzed.

In this work, we present a similar analysis of
CCSDT-n methods from n=0 (CCSD) to n=>5
(CCSDT). We will focus on the following questions.

1. Which correlation effects are covered by each of the
six CCSDT-n methods?

2. How do the CCSDT-n methods compare with meth-
ods that include T excitations in a noniterative way?

3. What is the best CCSDT-n method in terms of
accuracy and costs?

We will compare the results of the theoretical analysis
with results of CCSDT-n calculations carried out in
this work. In particular, we will investigate CCSDT-n
atomization energies of molecules difficult to describe
with correlation-corrected ab initio methods not con-
taining T excitations.

2 Analysis of CCSDT-n in terms of MBPT

The CCSD equations [19] are given in Egs (1), (2), and
3)
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where the reference wave function |®) is assumed to be
the Hartree—Fock (HF) wavefunction and H denotes the
normal product form of the Hamiltonian, namely

_ 1 1
(Tl + D+ Nh+ = T2+3'T3>(D0

(3)

H=Hy+7V

= Z {]ﬁb } (rFls) + {b*b*b, } || (4)

rstu

Symbols b* and b denote creation and annihilation
operators, respectively, and the symbol {} indicates a
normal-order form. In this article, we adhere to the usual
convention that subscripts i, j, k, [/ are used for occupied
spin orbitals; a, b, ¢, d for virtual orbitals; and r, s, ¢, u for

Scheme 1. Cluster expansion

used in the projection onto the ~ Method S D T

single (S), double (D), and triple N N )

(T) subspaces [3] CCSD exp(71 + Z’g) . exp T1 + T2 Not included
CCSDT-1a exp(h + > + T3 exp T1+T2 +T3 1+7
CCSDT-1b exp(h + 1>+ T3 exp T1 +T2+T3 1+7
CCSDT-2 exp(li + T+ T3 exp f1+T2+Z3 exp(Br)
CCSDT-3 eXp 7:1 + Z‘z + T3 eXp T] + Tz + T_?, eXp T] + Tz
CCSDT-4 exp(Th + 1>+ T3 exp(h + 1>+ T3 exp T1+T2 +7
CCSDT exp(lT1 + T + T3 exp(l1 + T + T3 exp T1 +T2+T3)
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general spin orbitals. In Eqs (1), (2), (3), and (4), Ty, 1,
and T3 are cluster operators generating singly, doubly, and
triply excited determinants [®® >, @;}b > and \dlf}l'zc >

Noga and Bartlett [7] analyzed the CCSDT-n methods
by transferring the CCSDT amplitude equations into an
operator form based on the expansion of the effective
CC Hamiltonian in orders of perturbation theory. They
clarified at what level in the CCSDT-#n hierarchy a given
cluster operator term is introduced and at which order of
perturbation theory this term starts to contribute. The
present analysis is also based on an extension of cluster
amplitudes in orders of MBPT as is described in more
detail in articles 1 and 2 [25, 26]. In article 1 it is also
shown in terms of MBPT orders how a given cluster
operator in the S and D equations of CCSD contributes
to the correlation energy (Ref. [25], Table II) or alter-
natively how the various MBPT terms are generated
order by order by the CCSD equations (Ref. [25],
Table I1II). The repeated substitution of the CC ampli-
tudes during the MBPT analysis can also be connected
to the iterative solution of the CC equations, thus
demonstrating which MBPT terms are introduced at a
given iteration step [25, 26]. In this work we follow the
procedure outlined in articles 1 and 2.

2.1 Comparison of CCSDT-1 with CCSD

The CCSDT-1a equations [8, 9] are given by Egs. (5),
(6), (7), and (8).
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.,8) covered by the energy difference A=
. a Inclusion of new terms introduced by
CCSDT la. Note that a particular energy contribution E,p~ in
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The cluster operators in normal print are already
contained in the CCSD equations [15], while the
operators in bold print appear for the first time in the
CCSDT-1a equations. For CCSDT-1b the term 7775 has
to be added to the D excitation equation (Eq. 7) [11].
By introducing a perturbation parameter, A, into
Eq. (4), the CCSDT-1a Egs. (5), (6), (7), and (8) can be
rewritten in the form of Egs. (9), (10), (11), (12)
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in the £” row and connect B, C, etc. at row n — 1, n — 2, etc. until
n =4 is reached. In addition, solid (dashed) lines denote energy
terms that are fully (partially) contained in A. b Inclusion of terms
originally partially covered by CCSD, but fully contained in
CCSDT-1a. For further explanations, see text
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where (Ey — E9)™", (Ey — E“b)_ , and (E, — Ef¢ ~1are
the S, D, and T excitation energles As was described
elsewhere [21, 22] one can use Egs. (9), (10), (11),
and (12) to expand ESSSPT-14 in different orders of
perturbation theory. For example, at second order, one

obtains

Ego(rirSDT la(z) _ <(D0|I—/|?~2(1)(D0> (13)
and
a?(z) — (E —E,‘.’)71<(D? f/@(l)‘q)o> , (14)
alqua(z) _ (Eo ,Egj!?> <(I)“b VT ’(I)o> , (15)
-1 N
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= S bt bbb, (17)

ij,ab
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a;ljb(l) = <E0 —Ezb> <(I)Zb|V|q)0> . (18)

Since the difference between CCSDT-la and CCSD
results from the additional 75 terms in the CCSDT-1a
equatlons one has to concentrate on those energy
terms in ESCSPT-12 that result from 7. These are given in
Eq. (19):

CCSDT-1a CCSD
Ecorr Ecorr

= EY + ES) +2E8)
SDQ

+ Z (Z EABT + ETDA) + Z ( TBT T EBTD)
+ ZEATB

where E ) denotes the MBPT(4) energy contributions,
ES) the MBPT(5) energy contributions, etc. for A,
B, ...=S, D, T, Q. Symbols I and II denote that the

+EQ'2‘S(“)+O(EABCD) 5 (19)

185

corresponding energy terms are only partially contained.
For example, the term Eg%s = Eg’%s(l) +Eg'%s(II) is

partially contained in ESSSP but fully in ESCSPT-la)

which means that in the energy difference ESCSPT-1a

ESESP of Eq. (19) EQ6TS - Eg%s(l) g%S(II) appears.

The difference ESSSPT-12 — ECCSD s shown up to
eighth order in form of a graphical representation in
Fig. 1. Figure la gives the new energy contributions
added at the CCSDT-1a level, while Figure 1b depicts
just those energy terms that are already partially
contained in CCSD, but fully covered by CCSDT-1a.
Figure 1 as well as all other figures included in this
article are based on a graphical method that was deve-
loped to analyze CC methods [21, 22]. In each of these
dlagrams a particular energy contribution, Eﬁu)ac , 18
given by a solid line that starts at A =S, D, T, or Q in
the E™ row and connects B, C, etc. at rown — 1, n — 2,
etc. until n = 4 is reached. Coupling between A and B, B
and C, etc., strictly follows Slater rules, which means
that at the n — 1 level for A = T pentuple excitations are
possible for B, for A = Q pentuple and hextuple exci-
tations for B, etc. provided the path leads back to S, D,
T, Q at n = 4. Therefore, at each order, n, higher than Q
excitations are included (in parentheses after a down-
ward directed wiggle as a separator) that could be con-
tained in E“apc with m > n. Further details are
included in the graphical representations, such as Fig. 1,
by using solid, dashed, and hashed lines for the
connections between A, B, C, etc. of E™”spc . In this
way we distinguish between fully (all connection lines
are solid) and partially contained energy terms [at least
one connection line is dashed (I) or hashed (II)].

Figure la reveals that CCSDT-la in contrast to
CCSD covers (either fully or partially) a considerable
number of infinite-order T terms that result from the
cluster operator 75 in the S, D, and T equations (Egs.
6-8). At nth order with n =6, 7, and 8, the number of
newly added terms is 15 (3), 69 (31), and 318 (195), where
the numbers in parentheses give the partially added
terms. Most of these terms are of the type, E'; as
is clearly reflected by Eq. (19) and Fig. 1. Consequently,
CCSDT-1a is correct in fourth order, while CCSD is not.

By introducing the term 7773 into the D equation
(Eq. 7) the exponential ansatz with regard to the pro-
jection onto the D subspace is completed (see Scheme 1)
and the CCSDT-1b method is obtained [11].

ab
g

N 1. 1. . 1.
—|—T1T3 +—T3+—T2T2+—T4)’(D0> =0
KT T TR c

1A2 AA 1A2
ST+ T+ 575

H0+ﬁ+b+ﬂ+
(20)

Analysis of Eq. (20) along the lines described previously

leads to the energy difference ESCSPT-1P — pCCSDT-la
(compare also with Fig. 2):
CCSDT-1b _ 7-CCSDT-1
ECOrr ECOrr ¢
(6) = ()
= ESI(ID) + Y EQpoa (1) + 0(E<8>) . (21)
A
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Fig. 2. Graphical analysis of energy contributions at MBPT(n)

(n=4,...,8) in the energy difference ESSSPT-1P — ECCSDT-Ia

Obviously, the addition of 7173 does not have any effect
for the energy at fourth and fifth order although 773
represents a fourth-order wave function term and, by
this, is of lower wave function order than some of the
other cluster terms already included into CCSDT-1a.
At sixth, seventh, and eighth order, some energy terms
of the type E(n())Ts» which are partially contained
at the CCSDT-la level, are complemented. Since no
new energy terms enter at the CCSDT-1b level, CCSDT-
la and CCSDT-1b are so close that they should lead to
almost identical results.

In view of the success of methods that include T
effects in a perturbative way at the CC level [12], it
is interesting to compare CCSDT-1 with CCSD(T). The
energy of CCSD(T) is given by Eq. (22) [12]

ECCSP — gCOSD 4 AL (CCSD) (22)
where
SD D T
1(CCSD) Z Z ZaCCSD (@,|V D) (Eo — E) '
X (CI)t|V|CI)d>a§CSD . (23)

According to the analysis given in article 2 [26],
CCSD(T) is identical to CCSDT-1a up to fifth order.
At sixth, seventh, and eighth order, it fully or partially
contains 87% (40 out of 46 energy terms), 80% (141 out
of 176), and 72% (513 out of 712) of the CCSDT-1 terms
(see Table 1 and Ref. [26]). Hence, CCSDT-1 covers
more T terms than CCSD(T), but the differences are
not so severe. In view of the fact that CCSD(T) is
considerably cheaper than CCSDT-1, cost-efficiency
considerations should clearly favor CCSD(T).

2.2 Comparison of CCSDT-2 with CCSDT-1

The CCSDT-2 method is given by Egs. (5), (6), (20), and
(24):

abc
<(Dljk

A _ (. 1.
HyT; + V(Tz +§T22>‘q)0> =0, (24)
C

where the CCSDT-2 amplitudes a‘”,’f can be expanded in
terms of A according to Eq. (25):

A 1.
e = 2By — E) <q>fj;f (Tz + 5Tf) “D0> :
C
(25)

The differences between CCSDT-2 and CCSDT-1b
result from adding T2 to the T excitation (Eq. 24), thus

converting the cluster expansion from 75 to exp (I3)
(see Scheme 1). Analysis of the contributions due to Tz
leads to the energy difference ESSSPT—2 — gCCSPT- i
given by Eq. (26) and Fig. 3.

CCSDT-2 CCSDT-1b
Ecorr Ecorr

SD
5 6 6
= EQ)(I) + ESp () + 3 E (1) + 0(E<7>) (26)
A

The analysis reveals that the inclusion of 77 in Eq. (24)
does not lead to any new energy contributions, but adds
parts of the TQ coupling terms, which are missing at the
CCSDT-1b level. At fifth, sixth, seventh, and eighth
order, 1, 3, 15, and 62 energy contributions, respectively,
of the type E( ) are completed by CCSDT-2. Most
of these terms should be positive (the TQ term at
fifth order is a typical correction term [28, 39]), thus
correcting a possible exaggeration of electron correlation
effects at the CCSDT-1 level of theory.

2.3 Comparison of CCSDT-3 with CCSDT-2

By mcludmg cluster operators 7 Tz, 172 i 7, ;T, T2, and
T 71> into the CCSDT-2 Eq. (24), the cluster expansion

takes the form exp (71 +1>) (Scheme 1) and the

CCSDT-3 equations for T excitations are obtained:

abc
< (I)l ijk

PO
+§T1 T+
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Fig. 3. Graphical analysis of energy contributions at MBPT(n)

(n=4,...,8) in the energy difference ESSSPT-2 — ECCSPT-1P
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C

Since 7273, Ty T3, and T} T contribute to the correlation
energy in seventh and higher order of perturbation
theory, the addition of 7;75 predominantly determines
the difference between CCSDT-3 and CCSDT-2. That
part of EGC3PT—3 — ECCSPT=2 which results from 7173 in

Eq. (27), is given by Eq. (29):

CCSDT-3 CCSDT-2 _
Ecorr Ecorr

TTS (II) +ZETTSA II)

4—}{:12BTTS ) +0(EY) . (29)

Equation (29) shows that 7;7> in Eq. (28) introduces
at n = 6 and higher-order partial contributions of the
type El ')FTS , which are missing at the CCSDT-2
level. Figure 4, which gives ESSSPT-3 — ECOSDT=2
to elghth order confirms that at the CCSDT-3 level Just
the E"[1s  terms are complemented without adding any
other new energy contributions. Since these terms
describe important TT coupling effects that help to
avoid an exaggeration of T effects in correlation
calculations [25, 26], these changes can be important
for electron systems with strong electron clustering
(high-order correlation effects [28]); however, in other
cases their importance may be small because the TTS
effects enter MBPT one order later (Eq. 29) than the TQ
effects introduced at CCSDT-2 (Eq. 26).

2.4 Comparison of CCSDT-4 with CCSDT-3

The CCSDT-4 method is obtained by introducing the 7%
cluster operator into the T equations of CCSDT-3 in a
linear fashion (Eq. 27, Scheme 1).
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Fig. 4. Graphical analysis of energy contributions at MBPT(n)

(n=4,...,8) in the energy difference ESSSPT—3 — ECCSPT-2
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. . 1. PN
H<B+B+§@+HB

abc
< (Dl ik

Lona 1.2 1

+§ﬁn+§nﬁ+ynn>h» =0 (30)
C

According to the analysis carried out in this work, this

leads to differences in the correlation energies between
CCSDT-3 and CCSDT+4 at fifth and higher orders:

£ N )
TT + Z EATT
A
+ Eftp + Effo(D) + 0(E7)

(31)
Hence, at the CCSDT-4 level important new TT and
TTT couplmg terms appear, which are introduced by 73
in Eq. (30). Figure 5a, in which a more detailed analysis
of the difference ESSSPT—4 — ECCSPT=3 s given, indi-
cates that 4, 19(2), and 81(16) TT terms are added at
sixth, seventh and eighth order. Beside the newly added
TT coupling terms, other TT terms, which are already
partially contained in CCSDT-3, are also completed at
CCSDT-4 (one for n = 6, five for n = 7 and 25 for n = 8§,
cf. Fig. 5b).

CCSDT—-4 CCSDT-3 _
Ecorr Ecorr

2.5 Comparison of CCSDT with CCSDT-4

The correct T equation of CCSDT is obtained by adding
T3 and TiT3 to Eq. (30), thus getting the complete
exponential ansatz (Scheme 1):

abc
< (Difk

|[POT
+§Tl T2+§TIT2 +

_ [ . . 1. A A A A A A
H<B+B+§@+HB+HB+BE

(Do> =0.
C

(32)

The energy difference between CCSDT and CCSDT-4 is
described by Eq. (33) and Fig. 6.

CCSDT CCSDT—-4
Ecorr Ecorr

SDT
6 7 7
= Er(11) + Efgrs(1) Y Efer(11) + O(EW) (33)
A

Obviously, CCSDT-4 and CCSDT are closely related
since they differ in just the second part (II) of some
... TPT and some .TQTS.. energy contributions. At
eighth order, 16 E(II) parts of this nature come in at the
CCSDT level, which is not much in view of the fact that
there is a total of 915 (583 unique) energy contributions
at this order. Therefore, CCSDT-4 and CCSDT are
approximately equivalent in cases where TPT and TQTS
contributions are not important, which otherwise should
lead to a positive correction because of the fact that the
TPT contribution is larger zero at sixth order MBPT
[28, 39].

lags,  1ans
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By utilizing the diagrams shown in Figs. 1-6 together
with the corresponding diagram for CCSD [25], a
graphical analysis of energy contributions covered by
CCSDT can be given (Fig. 7). The contents of Figs. 1-7,
Tables 1 and 2, as well as the discussion given earlier are
summarized in Table 3. All the methods in Table 3
are iterative, where the reference method CCSD is the
least costly since the number of operations necessarily
increases with just the sixth power of the number, M,
of basis functions used. CCSDT is the most expensive
method because of its O(M®) dependence. In view of the
computational resources available nowadays, O(M®)
and O(M") calculations can be routinely done for small
and medium-sized molecules, while O(M®) methods such
as CCSDT can only be applied to relatively small
molecules.
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Fig. 5a, b. Graphical analysis of
energy contributions at
MBPT(n) (n = 4,...,8) in the
energy difference ESSSPT—4 —

(T) ESESPT-3 a Inclusion of contri-
butions that are not covered by
CCSDT-3, but that are con-
tained in CCSDT-4. b Inclusion
of terms partially included in

M CCSDT-3 and fully in CCSDT-4

In Sect. 3, the actual performance of CCSDT-n
methods is discussed on the basis of a series of calcula-
tions for some typical molecules difficult to describe with
uncorrelated methods.

3 Application of CCSDT-n methods

For a set of small molecules with two or three atoms,
atomization energies were calculated using unrestricted
HF-CCSDT-n theory in connection with Dunning’s
correlation-consistent  polarized-valence double-zeta
(cc-pVDZ) and correlation-consistent polarized-valence
triple-zeta (cc-pVTZ) basis sets [30], which correspond
to (10s5p2d1f/5s2pld) [4s3p2d1f/3s2pld] and (9sdpld/
4s1p) [3s2pld/2slp] contractions. All the calculations



were carried at experimental geometries [31-37] using the
ab initio program package COLOGNE99 [38]. Calculat-
ed CCSDT-n energies obtained with the cc-pVTZ basis
are listed in Table 4 for the molecules investigated, while
the corresponding atomic energies needed to calculate
atomization energies are listed in Table 5.

Changes in the CCSDT-n energy caused by
increasing n were analyzed by first scaling and then
averaging calculated energy differences AE(CCSDT-n)=
E(CCSDT-n) — E(CCSDT —#n) (n > n’; n=0: CCSD
reference) over all molecules considered. The scaling
factor for the individual correlation contributions at a
given CCSDT-n level was determined using Eq. (34):

E® peor S

E?spcp S

E®pc

®) M ®)
@) ) (T)

Fig. 6. Graphical analysis of energy contributions at MBPT(n)

(n=4,...,8) in the energy difference ESSSPT — ECESDT—4
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4 —1/2
f= (Z[AE(CCSDT - n)}2> . (34)
A scaled correlation energy contribution g(CCSDT-n)
was defined as

AE(CCSDT — n)
S
where the ¢(CCSDT-n) fulfill normalization Eq. (36):

[e(CCSDT — 1)]*+[¢(CCSDT = 2)P+...=1.  (36)

For each molecule, trends in the individual CCSDT-n
contributions can be described by the scaled energy
terms in a comparative way. Accordingly, one can
present the scaled energy terms e(CCSDT-n) in the form
of bar diagrams, for which we coin the term CCSDT-n
spectrum with reference to the term MPn spectrum
recently introduced [28].

The CCSDT-n spectrum of the molecules listed in
Table 4 is obtained by averaging the scaled energy terms
over all molecules investigated according to Eq. (37):

¢(CCSDT — n) = , (35)

N

Z(CCSDT —n) = %Z e(CCSDT — n)(i) ,

1

(37)

Table 1. The total number of energy contributions covered by
CCSDT-n at different orders of perturbation theory. For each
method, the entry k(/) gives the number, k, of all terms covered not
considering symmetry. Of the k terms / terms are covered only
partially

Methods 5 6 7 8
CCSD 92) 30(12) 107(61) 394(276)
CCSDT-1a 1202) 46(16) 176(91) 712(466)
CCSDT-1b 1202) 46(15) 176(87) 712(450)
CCSDT-2 12(1) 46(12) 176(74) 712(404)
CCSDT-3 12(1) 46(11) 176(69) 712(381)
CCSDT-4 13(1) 50(10) 195(66) 792(372)
CCSDT 13(1) 50(9) 195(62) 792(356)
o
T e Fig. 7. Graphical analysis of
:(H) /,/(157) ©  energy contributions at

v
~

N
v

[APSP
.

-~
\

~
\

v

MBPT(n) (n = 4,...,8) covered
by the CCSDT correlation
energy. Note that in Fig. 5 of
Ref. [21] some terms are missing
at seventh and eighth order
because in Ref. [21] the MBPT
analysis of the CCSDT energy at
sixth order was used to investi-
gate higher- and infinite-order
effects in CCSDT



190

0.20

-0.20+

-0.40+

Scaled Energy Contribution &

CCSDT-2
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Fig. 8. General CCSDT-n spectrum shown in the form of a bar
diagram and based on the CCSDT-n/correlation-consistent polar-
ized-valence double-zeta (cc-pVDZ) and CCSDT-n/correlation-
consistent polarized-valence triple-zeta (cc-pVTZ) energies listed
in Table 4

where N = 13 is the total number of molecules i listed in
Table 4. The CCSDT-n spectra obtained in this work are
shown in Figs. 8 (averaged spectrum) and 9 (individual
molecules both for the cc-pVDZ and the cc-pVTZ basis
sets).

The CCSDT-n/cc-pVTZ spectrum of Fig. 8 confirms
what was found in the MBPT(#n) analysis: CCSDT-1a
leads to the largest energy-lowering, so the calculated
energies are similar or even lower than CCSDT energies
(Table 4). On average, CCSDT-1a correlation energies
correspond to 101.7% of the T correlation energy
of CCSDT (cc-pVTZ; cc-pVDZ: 97.9%), while the

-0.60-
u CC—pVDZ Table 3. Summary of the analysis of CCSDT-n methods. M is the
number of basis functions. If the percentage of terms covered does
ce-pVTZ not change forn — n + 1, the T terms added are just partial terms
0.80 Method Terms added T terms covered  Cost
CCSD Reference 0% O(M")
CCSDT-1a  ...T... 75% oM’
-1.004 CCSDT-1b  ..QTS..() 75% oM7)
Y CesDT-1a CCSDT-2  .TQ..(I) 75% oM
CCSDT-3 TTS..(ID) 75% oM’
CCSDT-4 WTIT.. 100% O(M?)
CCSDT JTPTAI), .TQTSAI)  100% o(M®)
Table 2. Number of triple
contributions covered by Order CCSD CCSDT-1b CCSDT-2 CCSxDT-3 CCSDT-4 CCSDT
CCSDT-n at different orders of R
many-body perturbation Fifth
theory. For each method, the Total 2(1) 5(1) 5 5 6 6
entry k(/) gives the number, k, NT) 2(1) 5(D) 5 5 5 5
of fully and partially covered N(TT) 1 1
terms not considering symme- Sixth
try. Of the k terms there are / Total 12(8) 27(10) 27(7) 27(6) 31(5) 31(4)
terms that are covered only N(T) 10(6) 22(7) 22(4) 22(4) 22(4) 22(4)
partially. N(T), N(TT), etc. N(TT) 2(2) 2(2) 2(2) 2(1) 5 5
denote the number of energy N(T..T) 3(1) 3(1) 3(1) 3(1) 3
terms with one, two, etc. T N(TTT) 1 1
excitations Seventh
Total 60(45) 123(63) 123(52) 123(47) 142(44) 142(40)
N(T) 40(26) 82(35) 82(27) 82(27) 82(27) 82(27)
N(TT) 10(10) 11(11) 11(11) 11(7) 22(5) 22(5)
N(T..T) 8(7) 26(13) 26(10) 26(10) 26(10) 26(7)
N(TTT) 2(2) 2(2) 2(2) 2(2) 5 5
N(TT..T) 2(2) 2(2) 2(1) 6(2) 6(1)
N(TTTT) 1 1
Eighth
Total 267(219)  552(360) 552(314) 552(291) 632(282) 632(266)
N(T) 145(103)  300(171) 300(143) 300(143) 300(143) 300(143)
N(TT) 40(40) 47(47) 47(47) 47(33) 82(30) 82(30)
N(T..T) 54(48) 150(91) 150(73) 150(73) 150(73) 150(64)
N(TTT) 10(10) 11(11) 11(11) 11(11) 22(5) 22(5)
N(TT..T) 16(16) 29(29) 29(29) 29(20) 52(21) 52(18)
N(T.T.T) 11(7) 11(7) 11(7) 11(7) 11(4)
N(TTTT) 2(2) 2(2) 2(2) 2(2) 5 5
N(TTT..T) (or TT..TT) 2(2) 2(2) 2(2) 9(3) 9(2)
N(TTTTT) 1 1




Table 4. CCSDT-n energies calculated for some molecules in their
ground state. All energies in hartree. &§(CCSDT-n) values are
calculated according to Eq. (37). Experimental geometries from
Refs. [27] [CO('S27): 1128 A; Fo('S" ") 1.412 A; FH('Y. " ):
0917 A; Ny('SSF): 1098 A; 0,CY7,); 1.207 A; NOCIL):

191

1.151 A], [28] [CHy('A): 1.113 A; 100.5°; CNCY ) 1.172 A,
[29] [CH,(B,): 1.075 A; 133.9°], [30] [HCN('S]): CH: 1.066 A;
CN: 1.153 A], [31] [HNC('S]): NH: 0.994; CN: 1.169 A], [32]
[HNO('A’): NO: 1.212, NH: 1.063 A; HNO: 108.6°], and [33]
[HOF('A’): OH: 0.966; OF: 1.435 A; HOF: 97.6°]

Molecule CCSD CCSD(T) CCSDT-1a CCSDT-1b CCSDT-2 CCSDT-3 CCSDT-4 CCSDT
1. cc-pVDZ calculations
CH,('A)) —-39.01939 —-39.02229 -39.02232 —39.02232 —39.02215 —-39.02215 —-39.02314 —39.02300
CH,(’B)) —39.03953 —-39.04124 —39.04125 —39.04125 —39.04117 —39.04118 —39.04167 —39.04162
CNCYL ) —92.48943 —-92.48909 -92.48943 -92.48946 -92.48780 -92.48916 -92.49317 -92.49162
HCN('YD) -93.17643 —93.18828 -93.18878 -93.18879 -93.18747 —-93.18748 -93.18897 -93.18849
HNC('YD) -93.15175 -93.16313 -93.16403 -93.16403 -93.16265 -93.16270 -93.16416 -93.16362
CO('SSY)  —113.04373 —113.05439 —113.05573 —113.05572 —113.05434 —113.05438 —113.05535 —113.05484
Nz(lzg) —-109.26339 —-109.27525 —-109.27576 —-109.27576 —-109.27443 —-109.27442 —-109.27578 —-109.27533
NO(’11,) —129.59894 —129.59794 —129.59894 —129.59886 —129.59758 -129.59771 —129.59910 —129.59855
HNO('A)  —130.15926 —-130.17129 —-130.17186 —-130.17184 —130.17055 —-130.17053 —-130.17213 —130.17160
02(32;) —149.97602 —149.98572 —149.98613 —149.98612 —149.98510 —149.98511 —149.98624 —149.98591
FH('S.%)  -100.22623 —-100.22815 —-100.22823 —-100.22824 —-100.22810 —-100.22810 —-100.22827 —-100.22824
HOF('A")  -175.14306 -175.15195 —175.15225 -175.15219 —-175.15143 -175.15138 —175.15255 -175.15224
FZ(IZ;) —199.09758 —199.09748 —199.09758 —199.09755 —199.09686 —199.09679 —199.09808 —199.09775
&§(CCSDT-n) —-0.97852 0.00114 0.09113 —-0.00849 —0.15455 0.04274
Mean absolute deviation, p 0.01410 0.00184 0.01948 0.01431 0.06298 0.01072
Standard deviation, ¢ 0.0181 0.0260 0.0237 0.0267 0.0795 0.0219
2. cc-pVTZ calculations
CH,('A) —39.05653 -39.06135 -39.06144 —-39.06144 -39.06118 -39.06120 —-39.06238 -39.06215
CH,(’B)) —39.07446 -39.07784 —-39.07788 —-39.07788 -39.07773 -39.07775 —-39.07843 —-39.07833
CNCYL D) -92.54722 -92.56571 -92.56628 -92.56631 -92.56403 -92.56580 -92.57011 -92.56806
HCN('YD) —-93.25725 -93.27512 —-93.27603 -93.27605 -93.27418 —-93.27424 -93.27567 —-93.27496
HNC('Y)) —-93.23409 —-93.25133 -93.25254 —-93.25255 -93.25065 -93.25075 —-93.25225 -93.25149
Co('SS%)  -113.13855 —113.15546 —-113.15708 —-113.15709 -113.15511  —113.15523 —-113.15631 —-113.15559
NZ(IZ;) —109.35536 —109.37384 —109.37477 —-109.37479 -109.37284  —109.37289 —-109.37423 —-109.37356
NO(’11,) —129.69838 —129.71682 —129.71822 -129.71815 -129.71614  —129.71638 —129.71794 -129.71713
HNO('A")  -130.27845 —130.29840 —130.29943 —130.29942 -130.29737 —130.29742 —-130.29916 —130.29836
02(32;) -150.11121 —150.12900 —150.12989 —150.12989 —150.12808 —150.12817 —150.12952 —150.12896
FH('S.")  -100.33199 —-100.33836 —100.33863 —100.33864 —100.33811 —100.33812 —-100.33849 —-100.33839
HOF('A’)  -175.31630 —175.33428 —-175.33504 —175.33499 —175.33334 —175.33336 —175.33488 —175.33430
FZ(IZ;) -199.27812 —199.29610 —199.29660 -199.29658 -199.29504  —199.29504 —199.29667 -199.29610
&§(CCSDT-n) —-0.98692 0.00021 0.08898 —-0.01042 —-0.10632 0.03946
Mean absolute deviation, p 0.00788 0.00109 0.01651 0.01217 0.05117 0.01043
Standard deviation, ¢ 0.0102 0.0014 0.0202 0.0229 0.0606 0.0198
Table 5. CCSDT-n/cc-pVTZ energies for some atoms in their ground state. All energies in hartree
Atom CCSD CCSD(T) CCSDT-1a CCSDT-1b CCSDT-2 CCSDT-3 CCSDT-4 CCSDT
H('S) —-0.49981 —-0.49981 —-0.49981 —-0.49981 —-0.49981 —-0.49981 —-0.49981 —-0.49981
cCp) —-37.77873 —-37.78076 —-37.78073 —37.78073 —-37.78071 —37.78071 —-37.78129 —37.78123
N(*S) —54.51471 —54.51471 —54.51471 —54.51471 —54.51465 —54.51465 —54.51508 —54.51503
OCP) —-74.97105 —74.97396 —-74.97400 —-74.97400 —-74.97387 =74.97387 -74.97431 =74.97425
F(P) -99.61677 —-99.62036 —-99.62045 —-99.62045 —-99.62023 —-99.62023 -99.62059 —-99.62054

corresponding value for CCSD(T) is 97.0% (cc-pVTZ;
cc-pVDZ: 93.5%). CCSDT-1b does not change
CCSDT-1a energies significantly; however, CCSDT-2
leads to an increase rather than a decrease of energies.
This is a result of adding ..TQ.. terms because the TQ
term at MBPT(5) and TQA terms at MBPT(6) represent
positive correction terms (coupling between three- and
four-electron correlation) [39] similarly as the Q term at
MBPT(4) does (for a discussion see Ref. [40]). CCSDT-3

leads to a negligible energy change because just some
terms contained partially at CCSDT-2 are comple-
mented (Table 2). At CCSDT-4, a number of . TT..
coupling terms representing new electron correlation
effects are added, which leads to a substantial lowering
of the energy (Fig. 8). Finally, at CCSDT-5 = CCSDT
additional correction terms containing TQ and TP
coupling effects (Table 3) are considered, so the energy
increases slightly (Fig. 8). Changes at CCSDT-2 to
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CCSDT largely cancel each other out, thus explaining
the similarity of CCSDT-1a and CCSDT energies, which
might be considered as an argument for approximating
CCSDT by CCSDT-1a rather than any more complete
CCSDT-n method.

For CCSDT-n calculations, a valence triple-zeta
polarized (VTZP) basis such as the cc-pVTZ basis set
fulfills the minimum requirements of a basis to be used
for the calculation of three-electron correlation effects;
however, often valence double-zeta polarized (VDZP)
basis sets are used because of computational limitations
hindering application of a VTZP basis. In Fig. 8, the
CCSDT-n/cc-pVDZ spectrum is compared with the
corresponding cc-pVTZ spectrum. There are two major
differences, which indicate the drawbacks of employing a
smaller basis set not flexible enough to describe higher-
order electron correlation effects. First, T effects are
underestimated at the CCSDT-1a level when using the
cc-pVDZ basis set. Second, TT correlation effects are

exaggerated at CCSDT-4 and this seems to be related to
the underestimation of T effects at CCSDT-1a. We note
that the TT effects at CCSDT-4 also cover the positive
correction terms TTQ and TTS (Eq. 31), which reduce
the negative TT effects depending on the importance
of three-electron correlation. If the latter is large, the
corrections are also large and lead to a reduction in the
TT contributions at CCSDT-4. Since a small basis
set such as the VDZP basis set underestimates the
importance of three-electron correlation effects [40], it
also leads to an exaggeration of the TT effects at
CCSDT-4.

The individual CCSDT-n spectra are shown in Fig. 9
for both the cc-pVDZ and the cc-pVTZ basis set used. The
CCSDT-n/cc-pVDZ spectrum of Fig. 9a suggests that all
the molecules investigated are similarly described at the
various CCSDT-n levels of theory and that, therefore,
there seems to be little reason to invest in these methods.
However, it is well known that VDZP basis sets are not
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suitable for use in highly correlated methods. This is also
confirmed by the CCSDT-n/cc-pVTZ spectra of Fig. 9b,
which reveal much more variation in calculated energy
changes upon increasing the CCSDT-n level. Since vari-
ations are still significant at CCSDT-4 and even at
CCSDT, there seems to be the necessity to apply even
CCSDT to get reliable results. However, neither the S-T
splitting of CH, (CCSDT-1a: 10.4; CCSDT: 10.2 kcal/
mol; experimental value: 9.2 kcal/mol), the isomerisation
energy for HCN — HNC (14.9; 14.7 kcal/mol; experi-
mental: 14.8 kcal/mol [41]) nor the atomization energies
listed in Table 6 (maximum changes of 1.2 kcal/mol)
confirm that there is the necessity to apply CCSDT to
get reliable relative energies, which, of course, does not
exclude the fact that CCSDT may be needed for the
description of other problems in chemistry.

The explanation for the constants of relative energies,
in particular atomization energies at all levels of
CCSDT-n theory, is found when comparing the
CCSDT-n spectra of molecules (Fig. 9) and atoms
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(Fig. 10). T contributions at CCSDT-n vary in a char-
acteristic way with respect to the electronegativity of the
atom considered. Absolute CCSDT-1a and CCSDT-2
contributions increase with the electronegativity of the
atom, while CCSDT-2 and CCSDT contributions de-
crease; similar trends can be found for the molecules of
Fig. 9. The electronegativity of an atom determines the
contraction of negative charge toward the nucleus and
by this the degree of electron clustering in the valence
shell. The larger the electronegativity the more electrons
around the nucleus cluster and the more important
three-electron correlation effects become for an effec-
tive separation of electrons in a confined space. Hence,
the T effects covered by CCSDT-1a increase in magni-
tude from C to F. Also, positive correction terms for
electron correlation either concerning an exaggeration
of pair or three-electron correlation increase, thus being
responsible for the relatively large . TQ.. terms
at CCSDT-2 or the relatively small ..TT.. terms at
CCSDT-4.
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CCSDT-l1a Fig. 10. Individual CCSDT-n spectra shown
; : t . - 7 in the form of a bar diagram for the atoms
CCSDT-1a CCSDT-1hb CCSDT-2 CCSDT-3 CCSDT-4 COSDT listed in Table 5

Table 6. CCSDT-n/cc-pVTZ atomization energies for some molecules in their ground state. All energies in kilocalorie per mole

Molecule CCSD CCSD(T) CCSDT-la  CCSDT-1b  CCSDT-2 CCSDT-3 CCSDT-4 CCSDT
CH,('A)) 176.4 176.3 176.4 176.4 176.2 176.3 176.6 176.5
CH,(*B,) 185.8 186.7 186.7 186.7 186.6 186.6 186.7 186.7
CN(ZZU 170.0 169.6 170.0 170.0 168.6 169.7 171.8 170.6
HCN(‘Z) 292.6 301.1 301.7 301.7 300.6 300.6 300.9 300.5
HNC(‘Z) 287.0 286.2 287.0 287.0 285.8 285.9 286.2 285.8
CO(IZ+) 244.0 251.5 252.5 252.5 251.4 251.4 251.5 251.1
N2(1Z;) 207.4 216.1 216.7 216.7 215.6 215.6 215.9 215.6
NO(CI1,) 134.9 143.2 144.0 144.0 142.9 143.0 143.4 143.0
HNO('A") 185.2 194.5 195.1 195.1 193.9 194.0 194.5 194.1
02(32;) 106.1 113.6 114.1 114.1 113.2 113.2 113.5 113.2
FH(‘Z*) 135.2 136.9 137.0 137.0 136.9 136.9 136.9 136.8
HOF('A") 143.5 150.7 151.1 151.1 150.3 150.3 150.7 150.4
FZ(IZ;) 28.0 34.8 35.0 34.9 343 34.2 34.8 34.5
Mean absolute deviation 14.4 7.8 7.3 7.3 8.2 8.1 7.6 8.0
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Table 7. Comparison of CCSDT-n/cc-pVTZ atomization energies
with G2 and experimental results. All energies in kilocalorie per
mole. QCISD(T)/6-311G(d,p), ABasis(G2), ACorr(G2) energy
differences were taken from G2 calculations [42], where ABasis(G2)
and ACorr(G2) are the estimated increments for the atomization
energies that have to be included into the G2 atomization energy
because of basis set extension to a 6-311+ G(2df,p) basis set and
because of higher-order electron correlation effects. For CCSDT

higher-order correlation effects are based on increments of
—7.4 mhartree for an electron pair and —0.28 mhartree for a single
electron. G(CCSDT) corresponds to a CCSDT-based G2 value.
A(G2) and A[G(CCSDT)] are the deviations from experimental
atomization enthalpies (see Ref. [32]) corrected to energies (without
zero-point-energy correction), where in the case of G[CCSDT)]
experimental values were complemented by G2 results (numbers in
parentheses)

Molecule QCISD(T)/ ABasis(G2) ACorr(G2) CCSDT/ ACorr G2 G AG2) A Expt.
6-311G(d,p) cc-pVTZ (CCSDT) (CCSDT) [G(CCSDT)]

CHz(lA]) 168.4 7.9 5.8 176.5 8.7 182.1 185.0 1.4 2.9 180.7
CH,(’B)) 181.0 5.1 2.9 186.7 4.3 189.0 190.9 -1.0 1.9 190.0
CN(ZZU 160.6 12.1 5.8 170.6 8.7 178.6  179.1 -2.8 =23 181.3
HCN(IE) 290.5 13.8 8.7 300.5 13.0 313.0 3132 2.4 2.6 310.6
HNC(IE) 275.1 14.3 8.7 285.8 13.0 298.1  298.5 0.4 (298.1)
CO(IZ+) 246.5 8.8 5.8 251.1 8.7 261.1  259.6 1.8 0.3 259.3
Nz(lz;) 205.4 13.2 8.7 215.6 13.0 2274 2283 -1.1 -0.2 228.5
NO(’I1,) 135.2 12.4 5.8 143.0 8.7 153.4  151.5 0.6 -13 152.8
HNO('A’) 183.0 15.2 8.7 194.1 13.0 2069  206.8 -0.1 (206.9)
02(32;) 105.9 9.3 2.9 113.2 4.3 118.1 117.4 -2.1 -2.8 120.3
FH(IZ+) 130.4 8.5 2.9 136.8 4.3 1419 141.0 2.4 1.6 139.5
HOF('A") 138.9 13.8 5.8 150.4 8.7 158.4  158.9 0.4 (158.4)
FQ(IZ;) 26.8 8.5 2.9 34.5 4.3 38.2 38.7 -0.1 0.5 38.2
Mean absolute  16.7 8.0 1.6 1.3

deviation

Table 8. (S?) values for some radicals and biradicals calculated at
the unrestricted Hartree—Fock (UHF) and UHF-CCSD levels of
theory. For explanation of terms, see text. cc-pVDZ calculations

& oI T+I11 total
Molecule <S2>UHF <S2>CCSD <S2>CCSD <SZ>CCSD
CH,(*B)) 2.0158 2.0007 2.0000 2.0003
CNCYL ) 1.1505 0.7872 0.7481 0.7532
NO(II,) 0.7957 0.7534 0.7500 0.7505
0,('y,) 2.0330 2.0007 2.0000 2.0005

Mean absolute deviations of calculated CCSDT-n
atomization energies from the corresponding experi-
mental values (obtained from experimental heats of
formation [32] corrected to energies with the help of
either calculated or measured vibrational frequencies)
or atomization energies from G2 calculations [42] show
such a small variation (7.3—-8 kcal/mol, Table 6) that
CCSDT-1a calculations turn out to be sufficient. Actu-
ally, atomization energies calculated with the less costly
CCSD(T) method agree even better with CCSDT values
although both differ from experimental or G2 values by
8 kcal/mol.

Table 7 provides data which show that actually the
starting point of the G2 calculations given by
QCISD(T)/6-311G(d,p) leads to a mean absolute devi-
ation twice as large as that calculated at the CCSDT
level. The success of G2 in reproducing experimental
values [42] is accomplished by estimating basis set and
higher-order electron correlation corrections as large
as 24 kcal/mol in a systematic way. Since the cc-pVTZ
basis set actually used in this work is of comparable size
as the basis modeled in G2 with the help of correction
increments, we can refrain from such an incremental
procedure. As for higher-order electron correlation

effects, a pair correction of —7.4 mhartree and a single
electron correction of —0.28 mhartree (G2: -5 and
—0.19 mhartree [42]) lead to the G2-type but CCSDT-
based [abbreviated as G(CCSDT)] atomization energies
of Table 7, which agree slightly better with experiment
than G2 values.'

Noteworthy are the relatively large errors in the
calculated atomization energies for the CN radical
(Table 7), which are parallel to the large variations in the
CCSDT-n correlation energies calculated for this dublet
radical (Figure 9, see, e.g., CCSDT-3 contributions). As
indicated by the calculated (S?) values listed in Table 8,
the UHF-CCSD description of the CN radical suffers
from considerable spin contamination. Actually, UHF-
CCSD and UHF-CCSDT are free from any S+ 1 con-
tamination so that spin contamination at these levels of
theory is a result of S+2 and higher contaminants [44].
The degree of spin contamination can be assessed by
calculating the energy-related part of (S?)ccsp denoted
in Table 8 as ($?)cap (note that ($2)ocgp itself is
misleading in this respect [44]). In the case of the CN
radical, (S’%gg& (= 0.7481) deviates significantly from
the ideal value of 0.75 confirming spin-contamination by
S+2 and higher contaminants at the UHF-CCSD and
the UHF-CCSDT-# levels of theory.

'The higher-order correlation corrections must be (in absolute
terms) larger for CCSDT than for QCISD(T) because the latter
method does not contain important (positive) coupling corrections
in the energy and, therefore, QCISD(T) energies become more
negative, for example, than CCSD(T) energies. Also, the G2-
extrapolation procedure of basis set effects turns out to exaggerate
energy-lowering relative to energies actually calculated with the
basis set modeled



4 Conclusions

The following conclusions can be drawn from this work.

1. CCSDT-1 is the most important step on the way
from CCSD to CCSDT. About 75% of the extra energy
contributions contained in CCSDT are brought in at this
level, of which up to 30% are just partial contributions.
The major advantage of CCSDT-1 is that it covers much
better than CCSD triple excitation effects; however,
since. CCSDT-1 contains only a few additional TT
coupling terms at higher orders (Table 2) there exists the
danger that the method exaggerates T effects.

2. CCSDT-2 and CCSDT-3 contain the same num-
ber of energy contributions as CCSDT-1 does; however,
some of these contributions are fully contained in
CCSDT-2,3, while they are only partially contained
in CCSDT-1. With regard to TQ and TT coupling
CCSDT-2,3 should be somewhat better than CCSDT-1,
but apart from this CCSDT-2,3 are not methods that
represent a major step in the direction of CCSDT.

3. At the CCSDT-4 level, CCSDT quality is reached
with regard to the total number of energy contributions.
Despite the fact that some of these energy contributions
are just partially contained in CCSDT-4, one can expect
that this method already provides a balanced description
of T effects, thus avoiding their exaggeration.

4. Since CCSDT-4 is as expensive as CCSDT, it is
difficult to see any reason to perform CCSDT-4 rather
than CCSDT calculations. Therefore, our analysis
suggests that the most interesting CCSDT-n method
is CCSDT-1 since it already contains a considerable
amount of T effects while still being an O(M”’) method.

5. CCSD(T) should provide a better cost-perfor-
mance ratio than CCSDT-1. Up to fifth order
CCSD(T) is identical with CCSDT-1a and at higher
orders it fully and partially contains 87% (n = 6), 80%
(n="17), and 72% (n = 8) of the CCSDT-1 terms. Since
it includes fewer T terms but the same number of TT
coupling terms as CCSDT-1 [26], it will probably avoid
exaggeration of T effects better than CCSDT-1.

6. There is no reliable procedure of predicting the
CCSDT energy from calculated CCSDT-n energies be-
cause of the alternating signs of the correlation contri-
butions added at the various levels. One could overcome
this problem if a general CCSDT-n spectrum existed for
each basis set used; however, the CCSDT-n spectra
calculated in this work indicate that there is consider-
able variation in the spectra obtained for individual
molecules.

7. The CCSDT-n methods provide an excellent basis
for investigating the stepwise inclusion of connected
T excitations in CC theory. CCSD methods with the
most important T effects, either CCSDT-1 or CCSD(T),
provide a reliable procedure for predicting atomization
energies with the help of an incremental G2-type ap-
proach as was already exploited by some other authors
[43]. For practical applications, use of CCSD(T) or the
complete set of T excitations at CCSDT is preferable.
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